

# A network of long term experimental sites to include quantitative modelling of pesticides losses in the multi-criteria assessment of innovating cropping systems in France







ONEMA

Benoit P.\*1, Alletto L.2, Gavaland A.3, Giuliano S.2, Farcy P.4, Darras S.5, Ubertosi M.6, Pernel J.7, Montagnier C.8, Véricel G.9, Mamy L.10, Pot V.1, Bedos C.1, Colnenne-David C.11, Doré T.11, Justes E.9, Munier-Jolain N.12

<sup>1</sup>INRA-AgroParisTech, UMR Environnement et Grandes Cultures, Thiverval-Grignon; <sup>2</sup>Université de Toulouse - Ecole d'Ingénieurs de Purpan, UMR AGIR, Toulouse; <sup>3</sup>INRA, Unité Expérimentale 'Grandes Cultures', Toulouse-Auzeville; <sup>4</sup>INRA, Unité Expérimentale de Dijon-Epoisses; <sup>5</sup>INRA, Unité Expérimentale 'Grandes Cultures' Innovation Environnement-Picardie', Estrées-Mons; <sup>6</sup>AgroSup Dijon, UMR AgroEcologie, Dijon; <sup>7</sup>Agro-Transfert Ressources et Territoires (AGT-RT), Mons-en-Chaussée; <sup>8</sup>INRA, Unité Expérimentale 'Grandes Cultures', Versailles-Grignon; <sup>9</sup>INRA, UMR AGIR, Toulouse; <sup>10</sup>INRA, UR PESSAC, Versailles; <sup>11</sup>INRA-AgroParisTech, UMR Agronomie, Thiverval-Grignon; <sup>12</sup>INRA, UMR AgroEcologie, Dijon

Corresponding author : benoit@grignon.inra.fr

#### **INTRODUCTION**

The French "Ecophyto plan 2018" aims at halving the use of pesticides and biocidal products over ten years. In such a context, agronomical research has been challenged to design new cropping systems that ensure a safe food supply and reduce drastically the dependence on pesticides. Designing innovative and sustainable cropping systems with low-pesticide inputs implies also to assess both their environmental and economical performances by quantifying different environmental and production components (Debaeke et al., 2009; Deytieux et al., 2012, Colnenne-David et al., 2013).

#### **OBJECTIVE**

The objective of the project is to assess the performances of new cropping systems in several pedoclimatic conditions and for major crop productions. Among the environmental impacts it is necessary to quantify the reduction of pesticide fluxes out of agricultural fields induced by these new cropping systems. Such an assessment can be achieved by long-term field experiments coupled by model simulations.

# A NETWORK OF SEVERAL LONG TERM EXPERIMENTAL FIELD SITES

#### **DESIGNING AND TESTING NEW CROPPING SYSTEMS**

- Based on Integrated Pest Management (IPM) and Ecological Intensification principles in order to meet a reduction of at least 50% of Treatment Frequency Index (TFI = ΣT ADT / HDT, with ADT the pesticide applied dose and HDT the registered dose) and avoid their use if possible
- Adapted to the French regional specificities: cereals, oilseed crops and legumes in Burgundy (Dijon) and Ile de France (Grignon) regions, sugar beet in Picardie (Estrées-Mons), irrigated maize monoculture or durum wheat – sunflower rainfed rotation in Midi-Pyrénées (Toulouse)
  - · Climate and soil variability
- · Crop and cropping system diversity (17 in total)



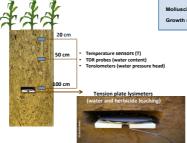




- Mechanical weeding, false seed bed techniqueSowing date and sowing density, resistant cultivars
- > Diversification and extension of crop rotations
- > Cover-cropping, intercropping and tillage






## MONITORING PESTICIDE LEACHING

- ✓ Knowledge of the field site history in terms of former pesticide applications
- $\checkmark$  Multi-residue analysis in leachate samples
- ✓ Few products monitored at the different sites according to their use (e.g. glyphosate, AMPA)
- ✓ Focus on specific compounds : S-metolachlor (Maize-Toulouse-Lamothe)

#### FIELD INSTRUMENTATION

- ✓ Temperature and water content are monitored at 20, 50 and 100 cm depth. Soil tension is measured at Toulouse-Lamothe
- Water flow measurements and quantification of pesticide leaching were carried out with tension plate lysimeters installed at 50 or 100 cm depth





# THE EXPERIMENTAL SITES

|                                                        | Dijon-                                                                                                                                                                                  | Grignon                                                                                                                                                                                                                                             | Toulouse-                                                                                                                                                                                                                              | Toulouse-                                                                                                                                                                      | Estrées-Mons                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | Epoisses                                                                                                                                                                                |                                                                                                                                                                                                                                                     | Auzeville                                                                                                                                                                                                                              | Lamothe                                                                                                                                                                        |                                                                                                                                                                                                                                                                                    |
| Sarting date                                           | 2000                                                                                                                                                                                    | 2008                                                                                                                                                                                                                                                | 2010                                                                                                                                                                                                                                   | 2010                                                                                                                                                                           | 2012                                                                                                                                                                                                                                                                               |
| Objectives                                             | Reduce pesticide use                                                                                                                                                                    | Reduce pesticide use<br>or fuel consumption or<br>greenhouse gaz<br>emission                                                                                                                                                                        | Reduce fertilizer and<br>pesticide use                                                                                                                                                                                                 | Reduce irrigation, and<br>pesticide use                                                                                                                                        | ,                                                                                                                                                                                                                                                                                  |
| Soil type                                              | Clayey soil                                                                                                                                                                             | Loamy soil                                                                                                                                                                                                                                          | Loamy clay soil                                                                                                                                                                                                                        | Loamy clay soil                                                                                                                                                                | Loamy clay soil                                                                                                                                                                                                                                                                    |
| FAO classification                                     | Calcic Cambisol                                                                                                                                                                         | Calcic Cambisol                                                                                                                                                                                                                                     | Gleyic Luvisol                                                                                                                                                                                                                         | Gleyic Luvisol                                                                                                                                                                 | Haplic luvisol                                                                                                                                                                                                                                                                     |
| Plot surface (ha)                                      | 2                                                                                                                                                                                       | 0.4                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                    | 0.08                                                                                                                                                                           | 0.6                                                                                                                                                                                                                                                                                |
| Reference system                                       | oilseed rape<br>winter wheat<br>winter barley                                                                                                                                           | field bean<br>winter wheat oilseed<br>rape winter wheat<br>mustard<br>spring barley                                                                                                                                                                 | durum wheat<br>sunflower                                                                                                                                                                                                               | irrigated maize                                                                                                                                                                | NT*: oilseed rape- winte<br>wheat-winter barley<br>CT*: winter wheat-sugar<br>beet - winter wheat -<br>oilseed rape                                                                                                                                                                |
| Innovative systems                                     | 3                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                      | 5                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                  |
| Repetitions                                            | 2                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                      | 2                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                  |
| Management options                                     | diversified crop<br>rotations<br>mechanical weeding<br>competitive and<br>resistant cultivars<br>delayed sowing<br>high sowing densities<br>false seed bed<br>technique<br>soil tillage | extended crop<br>rotations<br>mechanical weeding<br>competitive and<br>resistant cultivars<br>mixing cultivars<br>diversified sowing<br>dates<br>reducing N fertilization<br>reduce yield<br>objectives                                             | diversified crop<br>rotations<br>mechanical weeding<br>competitive and<br>resistant cultivars<br>mixing species<br>catch crops with high<br>density                                                                                    | diversified crop rotations mechanical weeding catch crops with high density mulching and no-tillage competitive and resistant cultivars strip-tillage and permanent cover crop | diversified crop rotations mechanical weeding competitive and resistan cultivars mixing species delayed sowing false-seed bed technique cover crop soil tillage                                                                                                                    |
| Pesticide losses<br>measurement<br>(repetitions/plots) | Wick Lysimeters (2)                                                                                                                                                                     | Tension plate<br>lysimeters (2)                                                                                                                                                                                                                     | Tension plate<br>lysimeters (2)                                                                                                                                                                                                        | Tension plate<br>lysimeters (2)                                                                                                                                                | Not instrumented                                                                                                                                                                                                                                                                   |
| Molecules applied<br>Herbicides                        | Glyphosate<br>Isoprofuron<br>Pendimethalin<br>Imazamox<br>Cloquintocet-mexyl<br>Pinoxaden,<br>Fluroxypyr<br>Naproparnide<br>Florasulam<br>Metazachior<br>Qulimmerac                     | Glyphosate<br>Isoprofuron<br>Pendimethalin<br>Imazamox<br>Cloquintocet-mexyl<br>Pinoxaden,<br>Tribenuron-methyl<br>Thidensulfuron-methyl<br>lodosulfuron-methyl<br>lodosulfuron-methyl<br>Colopyralid<br>Fluroxypyr<br>2,4-MCPA, 2,4-D<br>Aclonifen | Glyphosate<br>S-Metolachlor<br>Pendimethalin<br>Imazamox<br>Cloquintocet-mexyl<br>Dimethenamide<br>Tribenuron-methyl<br>Thidensulfuron-methyl<br>Messsulfuron-methyl<br>Iodosulfuron-methyl<br>Flurochloridone<br>Clodinafop-propargyl | Glyphosate S-Metolachiol Isoproturon Mesotrione Florasulam Cloquintocet-mexyl Iodosulfuron Quizaiofop-p-ethyl Sulcotrione Bentazone                                            | Glyphosate<br>Isoprofuron<br>Mesotrione<br>Diffufenican<br>Cloquintocet-mexyl<br>Metsuffuron-methyl<br>Amidosuffuron<br>Clopyralid<br>Diclofop-methyl<br>Fenoxogrop-p-ethyl<br>Fenoxogrop-p-ethyl<br>Eromoxynil<br>2,4-MCPA<br>Pyroxsulam, Florasulam<br>Triclopyr, Pyraflufen-eth |
| Fungicides                                             | Boscalid<br>Epoxiconazole<br>Cyproconazole<br>Prothioconazole<br>Azoxystrobin<br>Pyraclostrobin                                                                                         | Boscalid                                                                                                                                                                                                                                            | Metconazole<br>Difenoconazole<br>Fenpropimorphe<br>Azoxystrobin                                                                                                                                                                        | Epoxiconazole                                                                                                                                                                  | Boscalid<br>Epoxiconazole<br>Prothioconazole<br>Tebuconazole<br>Prochloraz, Fluxapyroxa<br>Pyraclostrobin<br>Trifloxystrobin                                                                                                                                                       |
| Insecticides  Molluscicides                            | λ-Cyhalothrin                                                                                                                                                                           | Cypermethrin  Mercaptodimethur                                                                                                                                                                                                                      | λ-Cyhalothrin<br>Cypermethrin<br>Tau-fluvalinate<br>Metaldehyde                                                                                                                                                                        | λ-Cyhalothrin                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| Wichusciclaes                                          |                                                                                                                                                                                         | wercaptoulmethur                                                                                                                                                                                                                                    | wetalderlyde                                                                                                                                                                                                                           | Metaldehyde                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |
| Growth regulators                                      | Prohexadione-Ca<br>Mepiquat-Chloride                                                                                                                                                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        | Thiamethoxam                                                                                                                                                                   | Trinexapac-ethyl                                                                                                                                                                                                                                                                   |

## MODELING

- ✓ Comparing various models and approaches: i) PRZM 3.12 (Carsel et al., 1998), ii) PEARL 4.4.4 (Leistra et al., 2001), iii) MACRO 5.2 (Larsbo & Jarvis, 2003)
- ✓ Assessing their abilities to simulate pesticide fate and transfer in complex crop rotations and pluriannual scenarii
- ✓ Targeting uncertainties and their sources

#### PESTICIDE FATE AND TRANSFER MODELING AS ONE PART OF GLOBAL ASSESSMENT

- ✓ The outputs of the pesticide fate models will be included in the multicriteria analysis, among other criteria such as : (i)other environmental impacts (energy uses, greenhouse gas emissions, nitrogen fluxes, crop diversity, soil quality) (ii)crop quality and yield (iii)economic performance
- ✓ The final objectives are to define which cropping systems will be suitable to optimize the sustainability of the arable crop production in each regional and pedoclimatic context in the case of a strong reduction of pesticide use

#### DEEEDENCES

Colnenne-David C, Grandeau G, Reau R, Doré T (2013), Innovative IPM for winter wheat based rotation: First results of ex post assessment from France. PURE congress: Future IPM in Europe, Riva del Garda, Italy, 19-21 March 2013.

Debaeke P, Munier-Jolain NM, Bertrand M, Guichard L, Nolot JM, Faloya V, Saulas P (2009). Iterative design and evaluation of rule-based cropping systems: methodology and case studies. A review. Agron. Sustain. Dev, 29, 73-86.

Deyteux V, Nemecek T, Freiermuth Knuchel R, Galllard G, Munier-Jolain NM (2012). Is Integrated Weed Management efficient for reducing environmental impacts of cropping systems? A case study based on life cycle assessment. Eur. J. Agron., 36, 55-65.

ACKNOWLEDGEMENTS: This work is financially supported by the EcoPhyto Plan-volet Expe (System ECOP4 project), the Pesticides – Ecophyto 2018 Research Program (ECOPEST project) and the ANR Systerra Programm (MICMAC design project - ANR-09-STRA-06 <a href="http://www.bna.fi/micmac-design">http://www.bna.fi/micmac-design</a>).